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Abstract: Fiber Bragg grating is inscribed on microfiber with femtosecond laser pulses irradiation. 
The microfiber is fabricated by stretching a section of single mode fiber over a flame. Periodic 
grooves are carved on the microfiber by the laser as have been observed experimentally. The 
microfiber Bragg grating is demonstrated for temperature and strain sensing, and the strain 
sensitivity is improved with decreased diameters of the microfibers.  
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1. Introduction 

There has been increasing interest in the research 

of microfiber these years due to its many unique 

properties such as large evanescent field, 

configurability, and strong confinement of the 

conducted light [1]. These distinctive features have 

been exploited in a wealth of applications ranging 

from telecommunication devices to sensors [2, 3], 

and from optical manipulation to high Q resonators. 

Fiber sensors, based on the various fiber 

components, have been developed in many forms 

[4–9], and are exhibiting outstanding performances 

in the field of physical and bio-chemical sensing. 

Fiber Bragg grating (FBG) is among the most 

important optical components which has a wide 

variation of applications [10–13]. Here we fabricate 

an FBG in the microfibers with diameter down to 

several micrometers, and the temperature and strain 

responses of the microfiber FBG are investigated by 

the experiment. 

2. Inscription of FBG in microfiber 

The microfiber is produced by the use of a flame 

torch and a translation stage with a flame-brush 

method. The flame is placed under the single mode 

fiber (SMF) to heat the fiber while the fiber is 

stretched by two translation stages. By controlling 

the position of the flame, microfibers with diameters 

from 5 m to 50 m are fabricated. Figure 1(a) 

shows the graphic of a microfiber with a diameter of 

10 m.  

The FBG is fabricated with the phase mask 

method. The femtosecond laser used for the 

fabrication process is a Ti-sapphire laser system 

(Spectrum Physics) with pulse duration of 50 fs and 

repetition rate of 1 kHz at 800 nm. The laser beam is 

focused into the microfiber through a phase mask 

(Stocker Yale) by a cylindrical lens. The fiber is 

located in a distance of 2 mm from the phase mask, 

and the position of the fiber is adjusted by a high 

precision 3-axis translation stage. The pulse energy 
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for the fabricating process is about 350 J. The 

exposure time varies from several ms to tens of ms 

for microfibers with different diameters. We use an 

amplified spontaneous emission (ASE) light source 

and an optical spectrum analyzer to collect the 

spectra of FBG. 

Figure 1(b) shows the periodic grating pattern on 

the microfiber that we observed from a microscope. 

As can be seen from the figure, the femtosecond 

exposure is likely to have caused surface ablation on 

the microfiber, which leads to the many grooves on 

the microfiber. 

 

(a) 

 

(b) 
Fig. 1 Femtosecond laser fabrication of microfiber: (a) a 

section of microfiber with diameter of about 10 m and      
(b) periodic grating structure on a microfiber. 

The reflection and transmission spectrum of 

FBG in microfiber with a diameter of 35 m is 

shown in Fig. 2(a). Very strong reflection is obtained 

by such a grating. From Fig. 2(b) we can see that the 

resonant wavelength of FBG in a 35 m diameter 

fiber has a blue shift versus the FBG in an SMF 

fabricated with the same laser and phase mask. This 

is because a thinner fiber leads to a drop in the 

effective refractive index of the modes propagating 

in the fiber, thus a decrease in B, which can be 

derived from the Bragg condition [10]: 

eff2B n                  (1) 

 

1520 1530 1540 1550 1560 1570 1580

0

4

8

12

16

20

Reflection 
Transmission 

Wavelength (nm) 

R
ef

le
ct

io
n 

(d
B

) 

12

10

8

6

4

2

0

T
ra

ns
m

is
si

on
 (

dB
) 

 
(a) 

 

1530 1535 1540 1545 1550 1555 1560

0

5

10

15

20

R
ef

le
ct

io
n 

(d
B

) 

Wavelength (nm) 

Microfiber (OD=35 m)

SM fiber 

 
(b) 

Fig. 2 Spectrum of microfiber FBG: (a) transmission and 
reflection spectrum of FBG in a microfiber and (b) reflection 
spectrum of single mode fiber FBG and microfiber FBG. 

3. Temperature and strain sensing 

A group of FBGs in microfibers with diameters 

of 9 m, 35 m, and 50 m are fabricated. These 

samples are heated from room temperature to 400℃ 

by use of a tube furnace, and the reflection spectra 

are recorded by an increment of 50℃. Figure 3(a) 

shows the wavelength shift of FBG in microfiber of 

50 m diameter, from which we can see that there is 

an obvious red-shift of the Bragg wavelength, which 

can be explained by the thermal-optic effect and 

thermal expansion of the grating. The temperature 

induced shift of the Bragg wavelength B can be 

written as [13]: 

eff
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where T is the temperature change, n is the 

thermo-optic coefficient, and  is the 

thermo-expansion coefficient. Temperature changes 

influence two factors: the temperature-induced 

refractive index variation and the temperature- 

induced grating pitch variation. The former is the 

dominating factor of the wavelength variation. 
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(b)  
Fig. 3 Wavelength shift and thermal response of FBG:     

(a) wavelength shift of FBG (50 m) during heating up and   
(b) thermal response of FBG with fiber diameters of 9 m,    
35 m, 50 m, and an SMF. 

Thermal responses of FBGs of different fiber 
diameters are shown in Fig. 3(b). From Fig. 3(b) we 
can see that there are no dramatic differences among 
the temperature sensitivities (around 11 pm/℃) of 
these FBGs. The results are close to the temperature 
sensitivity of FBG in a single mode fiber, since the 
shrinking of the fiber diameter hardly causes 
changes to the thermo-optic coefficient of the fiber 
material. 

The strain sensitivity of the microfiber Bragg 
grating is investigated by a setup shown in Fig. 4. 
The microfiber with FBG in its center is fixed 
between two precision translation stages where the 

microfiber is stretched by driving the screw of the 
stage along the fiber length, and the tensile 
elongation could be read directly from the scale on 
the screw. 

 
Fig. 4 Setup for strain sensitivity measurement. 
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Fig. 5 Strain test of FBGs: (a) wavelength shift of FBG with 

fiber diameter of 30 m under strain test and (b) a comparison of 
tensile strain responses of FBGs in different diameter fibers. 

Here we also employ a group of experiments on 
microfibers with the diameters of 20 m, 30 m, and 
40 m for comparison. Figure 5(a) shows the 
wavelength shift of FBG with fiber diameter of   
30 m when the FBG is stretched. We can see that 
there is a large change in the resonant wavelength 
from 1539 nm to 1543 nm when the strain employed 
on the microfiber increases from 5000  to   
15000 , which indicates a strain sensitivity of  
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0.35 pm/. Later, another two FBG samples with 
diameter of  20 m and 40 m are tested to made 
comparison, which is shown in Fig. 5(b). It can be 
seen that a decrease in fiber diameter has a 
significant contribution to improving tensile strain 
sensitivity. 

The strain sensitivities of these FBGs are   
0.228 pm/, 0.35 pm/, and 0.8 pm/ for the fiber 
diameter of 40 m, 30 m, and 20 m, respectively. 
It should be mentioned that the large value of strain 
induced in our experiment (tens of thousands of ) 
is due to a tremendous decrease in the fiber 
cross-section area, which means that a little tensile 
elongation would induce a massive strain in the 
microfiber. This unique character indicates a 
potential application for the sensing of tiny force. 

4. Conclusions 

We present the fabrication of Bragg grating on 
microfibers with diameter down to 9 m. The 
microfiber is made by stretching single mode fibers 
over a flame. Femtosecond laser pulse is used for 
the grating inscription, and periodic grooves are 
carved on the microfiber as we have observed 
experimentally. The microfiber Bragg grating is 
demonstrated for temperature and strain sensing, and 
the strain sensitivity can be improved by decreasing 
the diameter of the microfiber. 
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